Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches
نویسندگان
چکیده
It was established that the cytosine·thymine (C·T) mismatched DNA base pair with cis-oriented N1H glycosidic bonds has propeller-like structure (|N3C4C4N3| = 38.4°), which is stabilized by three specific intermolecular interactions-two antiparallel N4H…O4 (5.19 kcal mol(-1)) and N3H…N3 (6.33 kcal mol(-1)) H-bonds and a van der Waals (vdW) contact O2…O2 (0.32 kcal mol(-1)). The C·T base mispair is thermodynamically stable structure (ΔG(int) = -1.54 kcal mol(-1) ) and even slightly more stable than the A·T Watson-Crick DNA base pair (ΔG(int) = -1.43 kcal mol(-1)) at the room temperature. It was shown that the C·T ↔ C*·T* tautomerization via the double proton transfer (DPT) is assisted by the O2…O2 vdW contact along the entire range of the intrinsic reaction coordinate (IRC). The positive value of the Grunenberg's compliance constants (31.186, 30.265, and 22.166 Å/mdyn for the C·T, C*·T*, and TS(C·T ↔ C*·T*), respectively) proves that the O2…O2 vdW contact is a stabilizing interaction. Based on the sweeps of the H-bond energies, it was found that the N4H…O4/O4H…N4, and N3H…N3 H-bonds in the C·T and C*·T* base pairs are anticooperative and weaken each other, whereas the middle N3H…N3 H-bond and the O2…O2 vdW contact are cooperative and mutually reinforce each other. It was found that the tautomerization of the C·T base mispair through the DPT is concerted and asynchronous reaction that proceeds via the TS(C·T ↔ C*·T*) stabilized by the loosened N4-H-O4 covalent bridge, N3H…N3 H-bond (9.67 kcal mol(-1) ) and O2…O2 vdW contact (0.41 kcal mol(-1) ). The nine key points, describing the evolution of the C·T ↔ C*·T* tautomerization via the DPT, were detected and completely investigated along the IRC. The C*·T* mispair was revealed to be the dynamically unstable structure with a lifetime 2.13·× 10(-13) s. In this case, as for the A·T Watson-Crick DNA base pair, activates the mechanism of the quantum protection of the C·T DNA base mispair from its spontaneous mutagenic tautomerization through the DPT.
منابع مشابه
DPT tautomerisation of the G·A(syn) and A*·G*(syn) DNA mismatches: a QM/QTAIM combined atomistic investigation.
By applying a combined QM and QTAIM atomistic computational approach we have established for the first time that the G·A(syn) and A*·G*(syn) DNA mismatches (rare tautomers are marked with an asterisk), causing spontaneous transversions with substantially various probabilities, radically differ from each other in their ability to tautomerise through the double proton transfer (DPT). The A*·G*(sy...
متن کاملIs the DPT tautomerization of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question
Herein, we first address the question posed in the title by establishing the tautomerization trajectory via the double proton transfer of the adenine·guanine (A·G) DNA base mispair formed by the canonical tautomers of the A and G bases into the A*·G* DNA base mispair, involving mutagenic tautomers, with the use of the quantum-mechanical calculations and quantum theory of atoms in molecules (QTA...
متن کاملDPT tautomerisation of the wobble guanine·thymine DNA base mispair is not mutagenic: QM and QTAIM arguments.
We have shown for the first time, connecting QM methods with QTAIM analysis and using the methodology of the sweeps of the energetical, electron-topological and geometrical parameters, that the tautomerisation of the wobble guanine·thymine (wG·T) DNA base mispair into the wG(*)·T(*) base mispair induced by the double proton transfer (DPT), which undergoes a concerted asynchronous pathway, is no...
متن کاملComputational Investigation on Structural Properties of Carbon Nanotube Binding to Nucleotides According to the QM Methods
The interaction between nucleotides and carbon nanotubes (CNTs) is a subjectof many investigations for treating diseases but there are many questions in this field thatremain unanswered. Because of experimental methods involve assumptions andinterpretation besides limitations, there are many problems that the best study for them isusing theoretical study. Consequently, t...
متن کاملDynamics of spontaneous flipping of a mismatched base in DNA duplex.
DNA base flipping is a fundamental theme in DNA biophysics. The dynamics for a B-DNA base to spontaneously flip out of the double helix has significant implications in various DNA-protein interactions but are still poorly understood. The spontaneous base-flipping rate obtained previously via the imino proton exchange assay is most likely the rate of base wobbling instead of flipping. Using the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational chemistry
دوره 34 30 شماره
صفحات -
تاریخ انتشار 2013